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1. Introduction 
 
With the emergence of structural genomics, more effort is being invested into 
developing methods that incorporate basic crystallographic knowledge to 
enhance decision making procedures (e.g. Panjikar, 2005).  
A key area where some crystallographic knowledge is often vital for the smooth 
progress of structure solution is that of judging the quality or characteristics of an 
X-ray dataset. For instance, detecting the presence of anisotropic diffraction or 
twinning while a crystal is on the beam line, may allow the user to change the 
data collection strategy in order to obtain a better or a more complete data set. In 
post-collection analyses, the presence of (for instance) non-crystallographic 
translational symmetry might help the user (or program!) to solve the structure 
more easily. 
Of course, the identification of problems is by no means a guarantee that the 
problems can be overcome, but knowledge of the idiosyncrasies of a given X-ray 
data set permits the user or software pipeline to tailor the structure solution and 
refinement procedures to increase the chances of success. 
 
In this report, a number of routines are presented that assist the user in detecting 
specific problems or features within a given dataset. The routines are made 
available via the open source CCTBX libraries (http://cctbx.sourceforge.net) and 
will also be included in the next available PHENIX (Adams, et al., 2004) release. 
 
  
 
  
 
 
 
 
  



2. Methods 
 
2.1. Likelihood-based scaling 
 
Absolute scaling is performed using a maximum likelihood method as proposed 
by Popov & Bourenkov (2003). The X-ray amplitudes are assumed to follow a 
Wilson distribution, with a resolution dependent variance that takes into account 
the effects of geometric regularities on the average intensity (Zwart & Lamzin 
2004; Morris et al., 2004): 
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In the latter probability density function, σ2(d*) is equal to the sum of squared 
atomic form factors and the term γ(d*) is a correction term accounting for 
resolution dependent behavior of the mean intensity due to geometric 
regularities. The term γ(d*) has been obtained from 20 high quality experimental 
datasets in a manner similar as described by Zwart & Lamzin (2004). σ2(d*) is 
determined from the cell contents as provided by the user. 
The factor ε accounts for the statistical effect of symmetry on the expected 
intensity (Stewart & Karle, 1976). Fobs is an observed structure factor amplitude 
and k is a scale factor that brings the observation to an absolute scale with 
atomic displacement parameters equal to 0: 
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The tensor *U  is an anisotropic atomic displacement parameter (Grosse-
Kunstleve & Adams, 2002), the vector h is a Miller index. Note that the scalar 
part of the scale factor is an exponent, ]exp[ sk− , rather than the simple constant 
that is more frequently used (Giacovazzo (1992), expression 5.12). The use of an 
exponent has the benefit that no special precautions need to be taken during 
minimization procedures to ensure the positivity of k. 
 
The scale factor and elements of *U  are determined via the minimization of the 
negative of a log-likelihood function:  
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The negative log likelihood is optimized using a gradient driven L-BFGS 
minimizer (Liu & Nocedal, 1989). During optimization, symmetry constraints on 
the elements of *U  and its effect on the partial derivatives are taken into account 
(Grosse-Kunstleve et al., unpublished results). 
 
A related (and independent) implementation of the likelihood-based scaling 
routine is available in PHASER (McCoy et al., 2005). An isotropic, moment based 
method has been implemented in ARP/wARP (Morris et al., 2004).  



2.2 Detection of pseudo translational symmetry 
 
The presence of pseudo translational symmetry can often be detected by 
computing a native Patterson at truncated resolution. A significant off-origin peak 
indicates the presence of a large number of parallel inter-atomic vectors, due to 
translational NCS or due to an n-fold NCS axis parallel to an n-fold 
crystallographic axis. In order to determine whether an off-origin peak is 
significant, a frame of reference is needed. For this purpose, the largest off-origin 
peaks for roughly 500 high quality data sets from the PDB with 1 molecule in the 
asymmetric unit were computed and stored. In the latter calculations, only peaks 
further then 15 Å away from an origin peak were considered and the Patterson 
function was calculated using data between 10 and 5 Å resolution. The peak 
height of the largest peak in a Patterson map was expressed as a fraction of the 
height of the Patterson origin peak.  
 
The distribution of the selected peaks heights can be described by an extreme 
value distribution (Weisstein, 1999). The collected set of Patterson peaks 
denoted by }{ maxQ are limited between 0 and 1. The following standard 
transformation (Zwart, A.P., personal communication) scales the set of Patterson 
peak heights to the domain [0,∞): 
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A theorem similar to the central limit theorem, suggests that the values of 
/
maxQ follow a Frechet distribution (Weisstein, 1999). Applying the transformation 

specified in equation 4 and assuming a Frechet distribution for /
maxQ results in the 

following cumulative distribution function of the height of the largest off-origin 
peak in a Patterson map: 
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The constants a and b of this distribution function, were fitted using likelihood 
methods given the observed set of Patterson peak heights. The fitted constants a 
and b and are equal to 6.79*10-2 and 3.56, respectively. The observed and 
modeled cumulative distributions are shown in Fig 1. 
  
The significance of an observed off-origin Patterson peak can be assessed by 
computing a so-called p-value: the probability that a Patterson peak of that height 
or larger occurs by chance. This value is equal to )(1 maxQF− . If a threshold of 1% 
is chosen, all off-origin peaks with a height larger than 20% of the origin peak are 
considered to be significant. 
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Figure 1: Observed and modeled cumulative distribution of largest off-origin Patterson peak 

height Qmax. 
 
 
2.3. Twin detection 
 
The presence of twinning can usually be identified on the basis of the Wilson or 
intensity ratio (e.g. Dauter, 2003). In some cases however, the presence of 
pseudo translational symmetry or anisotropic diffraction influences the intensity 
statistics in such a way that twinning cannot readily be detected, even though it is 
present. Therefore, the |L| statistic developed by Padilla & Yeates (2003) is 
designed to be a more robust statistic for the detection of twinning, as it is 
relatively insensitive to anisotropy in the data and the presence of pseudo 
centering. The |L| statistic is defined as follows: 
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The intensities I1 and I2 have associated Miller indices that are close in reciprocal 
space, and are not necessarily related by a twin law: 

),,(21 llkkhh ndndnd=− hh         7 

dh, dk and dl are random signed integers and the constant nh,nk,nl are chosen on 
the basis of the location of significant off-origin Patterson peaks.  
 
The first and second non-central moments of |L| are equal to 1/2 and 1/3 for 
untwined, acentric data, respectively. If twinning is present, the moments are 
lowered and reach a value of 3/8 and 1/5 for perfectly twinned data. In order to 
detect twinning, the same data sets as used to obtain a distribution of Patterson 



peak heights, was used to compute <|L|> and <|L|2> values for data between 10 
and 3.5 Å resolution. The resulting set (<|L|>,<|L|2>) was used in the construction 
of a multivariate Z-score, known as the Mahalanobis distance (Mardia, 1980). For 
a given observed (<|L|>,<|L|2>) pair, the Mahalanobis distance is equivalent to the 
distance of the given pair to the multivariate mean in units of standard deviation. 
Values of the Mahalanobis distance larger then 3 indicate that the (<|L|>,<|L|2>) 
pair is outside the range expected for experimental data sets and could thus 
indicate twinning. 
The dependence of the Mahalanobis distance on the twin fraction is shown in 
Fig. 2, and indicates that X-ray data sets with a twin fraction larger then 6% have 
an expected Mahalanobis distance larger than 3. 
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Figure 2: The expected Mahalanobis distance for the fist and second moment of |L| of an X-ray 
data set (blue dots). The vertical error bars span three times the estimated standard deviation of 

the expected Mahalanobis distance. The black dotted horizontal line is drawn for the Mahalanobis 
distance being equal to three. The values shown in this figure were obtained via numerical 

simulations. 
  
 
2.4. Estimation of the twin fraction  
 
Although twin detection and the estimation of a twin fraction are related 
problems, it is useful to leave these topics separated, as will become clear in 
section 3.3.  
Estimating the twin fraction can be carried out in a number of ways. First of all the 
|H| test (Yeates, 1988; 1997) gives a numerically easily accessible estimate of 



the twin fraction. A Britton analysis (Fisher & Sweet, 1980), although less 
straightforward than the H-test, is another common way of estimating the twin 
fraction.  
Another way would be to estimate the twin fraction using the |L|-statistic. As the 
distribution of L for a given twin fraction is known for acentric reflections, a 
maximum likelihood approach can be used to estimate a twin fraction. A 
comparison of the 3 implemented twin fraction estimation procedures is shown in 
Fig. 3, where the mean values of estimated twin fraction are plotted given the 
true twin fraction. Although results of these analyses show that the estimation of 
the twin fraction via the L-statistic is sub-optimal in comparison to the two other 
methods, especially for large twin fractions, it could be potentially be useful in 
cases when a two-fold non crystallographic symmetry axis is parallel to a 
potential twin operator. In that case, the independence between intensities 
required by the Britton and H-test, is violated, resulting in an overestimation of 
the true twin fraction. The determination of the twin fraction via the L-test is most 
likely less sensitive to these types of problems. The biggest limitation of twin 
fraction estimation using the L statistic is its large associated standard deviation 
(results not shown). 
It should be noted that the distribution of the normalized intensity can also be 
used to estimate the twin fraction within a maximum likelihood framework (Zwart 
et al., unpublished results). However, the drawback of this method is its extreme 
sensitivity to translational symmetry.  
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Figure 3: The estimation of the twin fraction on simulated, twinned data. Mean values over 100 
trials per true twin fraction are shown. Both the H test and the Britton plot methods behave 

reasonably over the full range of twin fractions. The estimate of the twin fraction via the L statistic 
shows considerable bias, especially at large twin fractions. 

 
 
 



3. Examples 
 
3.1. The effect of anisotropy correction on the cumulative intensity 
distribution 
 
The X-ray data from PDB entry 1awu is known to be anisotropic (see for instance 
Padilla and Yeates, Fig. 1) and the resulting cumulative normalized intensity 
distributions differ significantly from the theoretically expected distributions. 
However, as a result of the likelihood-based anisotropic scaling procedure outline 
above, the estimated anisotropic overall B-value can be used to correct for the 
observed anisotropy. The effect of the anisotropy correction on the cumulative 
intensity distribution is shown in Fig. 4. 
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Figure 4: The effect of anisotropy correction on the cumulative intensity distribution. 

 
 

 
3.2. Detection of non-crystallographic translational symmetry 
 
The detection of non-crystallographic translational symmetry is illustrated using 4 
example data sets obtained from the PDB. The datasets used are 1sct, 1ihr, 
1c8u and 1ee2. 1sct is a classic example of pseudo centering, whereas 1ihr and 
1c8u are both structures with a two-fold NCS axis (almost) parallel to a two-fold 
(screw) axis. 1ee2 does not possess any non-crystallographic translational 
symmetry. 
 



The results for detection of translational symmetry via the presence of significant 
peaks in the native Patterson function are illustrated in Table 1. 
 

Table 1: The detection of pseudo translational symmetry. 
 

PDBID Peak Height p-value (%) <I2>/<I>2 <|L|> 
1sct 77% 0.0000094 2.81 0.490 
1ihr 45%  0.0014 2.51 0.539 
1c8u 20% 1 2.22 0.493 
1ee2 10% 15 2.09 0.497 

 
Note that the peak height (and thus the p-value) is correlated with the intensity 
ratio. The local intensity statistic <|L|> is however less sensitive to the presence 
of pseudo centering. 
 
3.3. Detection of twinning and estimation of the twin fraction 
 
The detection of twinning is illustrated using 5 examples obtained from the PDB. 
For each data set, the relevant statistics are given, as well as the reported twin 
fraction, if available. The twin laws for each test case were derived automatically 
from first principles (Flack, 1987; Grosse-Kunstleve et al., 2005). 
 
 
Table 2: Detection of twinning. The p-value is the p-value corresponding to the height of the 
largest off origin Patterson peak height. Maha(L) denotes the Mahalanobis distance of the 
observed  (<|L|>,<|L|2>) pair.  
 

Estimated twin fraction PDBID Space 
group 

Twin 
operator 

p-value 
(%) 

<I2>/<I>2 Maha(L) 
L-test Britton  H-test 

Reported  
twin fraction* 

1hfo C2 h,-k,-h-l 52 2.00 0.58 0.00 0.01 0.02 None 
1o0i C2 h,-k,-h-l 28 2.09 1.08 0.00 0.44 0.46 N.A. 
1hh8 C2 h,-k,-h-l 83 1.89 5.62 0.08 0.02 0.09 0 
1xed P21 h,-k,-h-l 38 1.79 6.34 0.10 0.35 0.38 0.37 
1ap9 P63 h,-h-k,-l 58 1.84 7.48 0.12 0.28 0.33 None 

*: None: no twinning was mentioned in the publication; N.A.: No publication available. 
 
Although most of the test cases are easy to interpret (1hh8, 1xed and 1ap9 are 
all most likely twinned and 1hfo is not twinned), the X-ray data of 1o0i behaves 
as if it is untwinned, but intensities related by the putative twin operator are highly 
correlated, resulting in a estimated twin fraction of larger then 0.4. This can be 
rationalized by postulating that the twin operator is in fact a crystallographic 
symmetry element and that the reported space group is too low.  
Note that if the decision about whether or not the data are twinned were made 
solely on the basis of the estimated twin fraction, 1o0i would be flagged as a 
potential perfect twin, even though the intensity statistics indicate that the 
structure is not twinned.  
  
 



4. Conclusions 
 
The routines presented here are aimed to provide the crystallographer with a set 
of statistics characterizing a given data set. The likelihood-based scaling routine 
provides an easy, non-graphical way of detecting anisotropy of the data by 
inspecting the elements of the estimated anisotropic tensor. 
For the detection of pseudo translational symmetry and twinning, a similar 
philosophy is adopted: the summary statistics of the given data set are listed 
within the context of a reference set of known structures. The non-graphical 
nature of these analyses allows a straightforward way of incorporating general 
crystallographic experience into automated structure solution pipelines and 
allows expert and non-expert users to quickly place the results in context. 
 
The algorithms are available as part of the open source CCTBX libraries 
(http://cctbx.sourceforge.net) and will also be available via future CCP4 releases 
that incorporate the CCTBX. 
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